Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Infect Dev Ctries ; 16(6): 981-992, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1924344

ABSTRACT

The objectives of this study were to determine the prevalence of cerebrovascular diseases caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, and to assess the pharmacological agents used in such cases as reported in the literature. Patient files were retrospectively scanned to determine the prevalence of neurological symptoms of the central nervous system (headache, dizziness, lack of smell and taste, numbness in arms and legs, change in consciousness, muscle weakness, loss of urine and stool control) and cerebrovascular diseases (ischemic cerebrovascular diseases, cerebral venous sinus thrombosis, intracerebral hemorrhage, subarachnoid/subdural hemorrhage) in 2019 novel coronavirus (2019-nCoV) disease (COVID-19) cases (n = 20,099). The diagnostic laboratory, radiology examinations and treatments applied to these cases were recorded. The data from studies presenting cerebrovascular diseases associated with SARS-Cov-2, which constituted 0.035% of all cases, were systematically evaluated from electronic databases. During the treatment of cerebrovascular diseases, it was discovered that high doses of enoxaparin sodium anti-Xa are combined with apixaban or acetylsalicylic acid or clopidogrel or piracetam, and mannitol, in addition to SARS-CoV-2 treatment modalities. While neurological symptoms of the central nervous system are uncommon in cases of SARS-CoV-2 infection, cerebrovascular diseases are far less common, according to the findings of this study. Acute cerebral ischemia was discovered to be the most common cerebrovascular disease associated with SARS-CoV-2. The mortality rate increases with the association between SARS-CoV-2 and cerebrovascular disease.


Subject(s)
COVID-19 , Cerebrovascular Disorders , Aspirin , Brain Ischemia/epidemiology , Brain Ischemia/etiology , Brain Ischemia/mortality , COVID-19/complications , COVID-19/epidemiology , COVID-19/mortality , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/mortality , Clopidogrel , Enoxaparin/analogs & derivatives , Humans , Mannitol , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Piracetam , Pyrazoles , Pyridones , Retrospective Studies , SARS-CoV-2
2.
Lancet Respir Med ; 9(11): 1299-1312, 2021 11.
Article in English | MEDLINE | ID: covidwho-1505881

ABSTRACT

BACKGROUND: Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine. In phase 2b and 3 studies, tezepelumab significantly reduced exacerbations versus placebo in patients with severe uncontrolled asthma, irrespective of baseline levels of type 2 inflammatory biomarkers. We investigated the mechanism of action of tezepelumab by assessing its effects on airway inflammatory cells, airway remodelling, and airway hyperresponsiveness. METHODS: CASCADE was an exploratory, double-blind, randomised, placebo-controlled, parallel-group, phase 2 study done in 27 medical centres in Canada, Denmark, Germany, the UK, and the USA. Adults aged 18-75 years with uncontrolled, moderate-to-severe asthma were randomly assigned (1:1) to receive tezepelumab 210 mg or placebo administered subcutaneously every 4 weeks for a planned 28 weeks, extended to up to 52 weeks if COVID-19-related disruption delayed participants' end-of-treatment assessments. Randomisation was balanced and stratified by blood eosinophil count. The primary endpoint was the change from baseline to the end of treatment in the number of airway submucosal inflammatory cells in bronchoscopic biopsy samples. Eosinophils, neutrophils, CD3+ T cells, CD4+ T cells, tryptase+ mast cells, and chymase+ mast cells were evaluated separately. This endpoint was also assessed in subgroups according to baseline type 2 inflammatory biomarker levels, including blood eosinophil count. Airway remodelling was assessed via the secondary endpoints of change from baseline in reticular basement membrane thickness and epithelial integrity (proportions of denuded, damaged, and intact epithelium). Exploratory outcomes included airway hyperresponsiveness to mannitol. All participants who completed at least 20 weeks of study treatment, had an end-of-treatment visit up to 8 weeks after the last dose of study drug, and had evaluable baseline and end-of-treatment bronchoscopies were included in the primary efficacy analysis. All participants who received at least one dose of study drug were included in the safety analyses. This study is registered with ClinicalTrials.gov, NCT03688074. FINDINGS: Between Nov 2, 2018, and Nov 16, 2020, 250 patients were enrolled, 116 of whom were randomly assigned (59 to tezepelumab, 57 to placebo). 48 in the tezepelumab group and 51 in the placebo group completed the study and were assessed for the primary endpoint. Treatment with tezepelumab resulted in a nominally significantly greater reduction from baseline to the end of treatment in airway submucosal eosinophils versus placebo (ratio of geometric least-squares means 0·15 [95% CI 0·05-0·41]; nominal p<0·0010), with the difference seen across all baseline biomarker subgroups. There were no significant differences between treatment groups in the other cell types evaluated (ratio of geometric least-squares means: neutrophils 1·36 [95% CI 0·94-1·97]; CD3+ T cells 1·12 [0·86-1·46]; CD4+ T cells 1·18 [0·90-1·55]; tryptase+ mast cells 0·83 [0·61-1·15]; chymase+ mast cells 1·19 [0·67-2·10]; all p>0·10). In assessment of secondary endpoints, there were no significant differences between treatment groups in reticular basement membrane thickness and epithelial integrity. In an exploratory analysis, the reduction in airway hyperresponsiveness to mannitol was significantly greater with tezepelumab versus placebo (least-squares mean change from baseline in interpolated or extrapolated provoking dose of mannitol required to induce ≥15% reduction in FEV1 from baseline: tezepelumab 197·4 mg [95% CI 107·9 to 286·9]; placebo 58·6 mg [-30·1 to 147·33]; difference 138·8 [14·2 to 263·3], nominal p=0·030). Adverse events were reported in 53 (90%) patients in the tezepelumab group and 51 (90%) patients in the placebo group, and there were no safety findings of concern. INTERPRETATION: The improvements in asthma clinical outcomes observed in previous studies with tezepelumab are probably driven, at least in part, by reductions in eosinophilic airway inflammation, as shown here by reduced airway eosinophil counts regardless of baseline blood eosinophil count. Tezepelumab also reduced airway hyperresponsiveness to mannitol, indicating that TSLP blockade might have additional benefits in asthma beyond reducing type 2 airway inflammation. FUNDING: AstraZeneca and Amgen.


Subject(s)
Airway Remodeling/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Asthma , Respiratory Hypersensitivity , Asthma/drug therapy , Chymases , Double-Blind Method , Eosinophilia , Humans , Inflammation , Mannitol , Respiratory Hypersensitivity/drug therapy , Treatment Outcome , Tryptases
3.
PLoS One ; 16(6): e0253543, 2021.
Article in English | MEDLINE | ID: covidwho-1282302

ABSTRACT

Based on several lines of evidence, numerous investigators have suggested that acetaminophen exposure during early development can induce neurological disorders. We had previously postulated that acetaminophen exposure early in life, if combined with antioxidants that prevent accumulation of NAPQI, the toxic metabolite of acetaminophen, might be innocuous. In this study, we administered acetaminophen at or below the currently recommended therapeutic dose to male laboratory rat pups aged 4-10 days. The antioxidants cysteine and mannitol were included to prevent accumulation of NAPQI. In addition, animals were exposed to a cassette of common stress factors: an inflammatory diet, psychological stress, antibiotics, and mock infections using killed bacteria. At age 37-49 days, observation during introduction to a novel conspecific revealed increased rearing behavior, an asocial activity, in animals treated with acetaminophen plus antioxidants, regardless of their exposure to oxidative stress factors (2-way ANOVA; P < 0.0001). This observation would suggest that the initial hypothesis is incorrect, and that oxidative stress mediators do not entirely eliminate the effects of acetaminophen on neurodevelopment. This study provides additional cause for caution when considering the use of acetaminophen in the pediatric population, and provides evidence that the effects of acetaminophen on neurodevelopment need to be considered both in the presence and in the absence of oxidative stress.


Subject(s)
Acetaminophen/pharmacology , Behavior, Animal/drug effects , Cysteine/pharmacology , Mannitol/pharmacology , Neurogenesis/drug effects , Animals , Animals, Newborn , Female , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL